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Transmission probability and traversal time in scattering by a 
one-dimensional potential of finite range 

J E G Farina 
Department of Mathematics, University of Nottingham, Nottingham NG7 2RD, UK 

Received 25 February 1988 

Abstract. Scattering by a one-dimensional potential V =  V ( x )  which is constant outside 
[ -a ,  a ]  ( a  > 0) is investigated. Exact expressions for the transmission and reflection 
coefficients are obtained in terms of f o ( a ) ,  f , ( a ) ,  ! ; ( a )  and f i ( a ) ,  where fo and f, are the 
solutions in [ -a,  a ]  satisfying the boundary conditions f o ( - a )  = l , f;(-a) = O , f , ( - a )  = O  
andf i ( -a )  = 1. These expressions are used to show that the first-order W K B  approximation 
conserves particles. Numerical results are obtained from these expressions for the trans- 
mission and reflection probabilities by (i) using the WKB formulae and (ii) solving the 
time-independent Schrodinger equation numerically in [ -a,  a ] .  The time T for the centre 
of a wavepacket to traverse the interval [ -a ,  a ]  is also obtained in ternis offo(a), f , ( a ) ,  
f h ( a )  a n d f i ( a ) ,  and some of its properties studied. In particular, it is shown that T takes 
the classical form in the classical limit. 

1. Introduction 

One-dimensional tunnelling in modern solid state devices has led to renewed interest 
both in the computation of tunnelling probabilities, and also in the question of the 
time taken for an electron to tunnel through a potential barrier. This paper is devoted 
to a discussion of these two problems. 

The W K B  method, or J W K B  method, has frequently been used to calculate the 
tunnelling probability. The method was certainly known to Green (Farina 1976) and 
may be traced back even earlier (Froman and Froman 1965). In quantum mechanics 
it is often used to calculate the tunnelling coefficient T for a one-dimensional potential 
barrier, which is important for applications in solid state physics, for example. 

With the advent of modern computers it is now easy to calculate T directly by 
numerical means (see, for example, the VL method, described in Vigneron and Lambin 
(1980), Lambin and Vigneron (1981) and Nguyen et al (1985)). We shall present a 
method here which, like the VL method, provides a direct numerical technique for 
evaluation of the tunnelling probability. However, in addition to this, it also checks 
the numerical accuracy by means of the Wronskian and the conservation of particles 
and provides a general expression for the time T taken for the centre of a wavepacket 
to cross the barrier. In fact, our result is valid for any piecewise continuous potential 
V which is constant outside some finite interval [ -a ,  a ] ,  and not just for tunnelling 
through a rectangular barrier, which is a special case. 

In § 2 we derive expressions for the transmission and reflection coefficients in terms 
of the values of real functions fo and f, (defined by boundary conditions at x = - a )  
evaluated at the point x = a. It is then shown that particles are conserved if fo and f, 
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are exact solutions of the time-independent Schrodinger equation in ( -a ,  a ) .  A quantity 
E is defined which measures the extent to which particle conservation is violated if 
approximate solutions are used for fo and fl .  

In § 3 we describe the zero- and first-order WKB approximations and prove that 
the first-order WKB approximation conserves particles. Numerical examples, including 
comparison with exact calculations, are described in § 4 .  In the remaining sections 
the method is used to analyse the time taken for the centre of the wavepacket (as 
defined by the stationary phase approximation) to cross the interval [-a, a ] .  In 
particular, we show that this takes the expected form in the classical limit (0 7 ) ,  while 
the special case of the rectangular barrier is considered in P 8. 

2. The general result 

We consider the one-dimensional problem (in standard notation) 

-- ’* $”+ V$= E+ 
2 m  

where the potential V is constant for x < - a  or x > a ( a  > 0). Without loss of generality 
we can take V = 0 when x < - a ;  we put V = V, when x > a. It will be assumed that 
E > 0 and E > V,, so that transmission is possible. 

Equation ( 2 . 1 )  can be written 

$”+ k2$ = U$ ( 2 . 2 )  
where 

u = 2 m v / h 2  k = ( 2 m E / h 2 ) L ’ 2 .  
Assuming that the particle is incident from the left 

exp(ikx) + p exp( -ikx) x < - a  
T exp(iqx) x > a  

( 2 . 3 )  

( 2 . 4 )  

where p and r are the reflection and transmission coefficients, respectively, and the 
positive wavenumber q is defined by the energy conservation condition 

h 2 k 2 / 2 m  = E = h Z q 2 / 2 m  + V,. ( 2 . 5 )  
Letf, andf, be two continuously differentiable functions in [ -a ,  a ]  (not necessarily 

solutions of ( 2 . 2 ) )  which satisfy the boundary conditions 
f , ( - a )  = 1 f h ( - a )  = 0 f ,(-a) = 0 f { ( - a ) = l .  ( 2 . 6 )  

Define a function $ on [ -a ,  a ]  by 

* (X I  = aofo(x) + . l f I ( X ) .  ( 2 . 7 )  
a,  and a1 are constants which will be complex in general. Again $ may not necessarily 
satisfy ( 2 . 2 ) .  

The continuity conditions on $ and 4‘ at x = * a  are easily written down using 
( 2 . 4 ) ,  ( 2 . 6 )  and ( 2 . 7 ) ;  they are 

exp(-ika)+p exp(ika) = a,  
ik exp(-ika) -ikp exp(ika) = a ,  

7 exp(iqa) = ao fo (a )  + a,fl(a) 
iqT exp(iqa) = ao fh (a )+  a l f ’ l ( a ) .  
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Equations (2.8) are easily solved algebraically for p and T ;  we get 

~ = 2 i k  exp[-i(k+q)a] W(a)A-’ (2.9) 

P = exp(-2ika){[kqfl(a) +fb(a)I +i[kf’l(a) - qfO(a)IIA-’ (2.10) 

A =  kqf,(a) - fh(a)+i[kf : (a)+qfo(a) l  (2.11) 

w ( x 1 = fo( x If ; (x ) - f b( x If1 (x  ). (2.12) 

Iffo(a), fh(a), f , ( a )  and f i ( a )  are computed by solving (2.2) exactly for fo and f,, 
subject to the boundary conditions (2.6), and T and p are obtained from (2.9)-(2.12), 
then T and p will be the exact transmission and reflection coefficients, respectively. 

The condition for the conservation of particles is klpI2+ qIT./* = k, so if we put 

where 

and the Wronskian W(x) is defined by 

E =  k-’(klp/2+q1T12)-l (2.13) 

E is a measure of the extent to which conservation of particles is violated. Equations 
(2.9)-(2.13) yield 

(2.14) 

Suppose now that fo and f, are indeed exact solutions of (2.2) in [-a, a]. If V is 
piecewise continuous in [ -a ,  a ]  the Wronskian is constant and then W( a )  = W( -a) = 
1, so by (2.14) E = O  and particles are conserved. 

If, on the other hand,fo andf,, while satisfying (2.6), are only approximate solutions 
of (2.2) in [-a, a], then W(-a) = 1 but W ( a )  may differ from unity and E may not 
vanish. E becomes an indicator of the accuracy of the approximation for fo and f,. 

E =4kqW(a)[ W(a)  - 1]1A1-2. 

3. Application to the WKB approximation 

Define K = K ( X )  by 

[ U(X)  - k2]1’2 if U ( x )  5 k2 
i[ k2 - U ( X ) ] ” ~  if U ( x )  s k2. 

K ( X ) =  

The differential equation (2.2) can now be written 

+”- K 2 +  =o.  (3.2) 

+(x)  = A exp[iS(x)/h] (3.3) 

The basis of the WKB method is to make the substitution 

where A is a (possibly complex) constant and S is a complex-valued function of x. 
If we substitute for + from (3.3) into (3.2) we obtain 

(3.4) ifis”- sf2 - f i 2 K 2  = 0. 

Put [p(x)]*= - f i * [ ~ ( x ) ] ~ ;  if p(x)  is real (that is, k 2 L  U(x))  it is the classical momen- 
tum. Equation (3.4) can be written 

ifiSt’-S’*+p2=0. (3.5) 
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Equation (3.5) is solved by expanding S in powers of h (the details may be found 

(3.6) 

in Schiff (1955, pp 185-7)). The results are: 

zero order: $(x) = A  exp[*p(x)] 

where 

first order: $(x) = A[K(X)]-’” exp[*p(x)]. 

It follows from these results that the zeroth-order WKB approximations to fo and 
fl are 

fo(x) = cosh P ( x )  f,(X)=[K(-U)]-’sinh p ( X ) .  (3.9) 

These are approximate solutions of (2.2) which satisfy the boundary conditions (2.6) 
exactly. The first-order approximations are 

fo(x) = A0[~(x)]-”’  cosh p ( x ) +  k o [ ~ ( x ) ] - ” 2  sinh p ( x )  

f ,(x) = Al[~(x) ] -” ’  cosh p ( x ) +  B1[~(x) ] -”*  sinh p(x) .  

( 3 . 1 0 ~ )  

(3.10b) 

The constants Ao, Bo, AI and B1 are determined by the boundary conditions (2.6); in 
fact 

(3.1 1 a )  Ao= [ K (  0 - z [ K ( - a ) l -  K ( - a )  

A, = O  B,  = [K(-a)]-”2. (3.11b) 

It is easy to check that these approximations to fo and fl, whether given by (3.9), or 
by (3.10) and (3.11), are real. 

B -1 3/2 I 

The neglect of ihS” in (3.4) is justified if 

hlS”(x)l<< h2K2. (3.12) 

The zeroth-order approximation for S is 

S(x)  = *ihp(x).  (3.13) 

If the approximation is consistent (3.13) should satisfy (3.12), i.e. 

IK’(X)I<< [ K ( X ) I 2 .  (3.14) 

In other words, K must be slowly varying. 
In fact, (3.14) is necessary but not sufficient. For, if a is large, K ( X )  may vary 

significantly from K ( - U )  for values of x in [-a, a]. Comparison of (3.6) with (3.8) 
then shows that the first-order WKB approximation for $(x) is significantly different 
from the zeroth-order approximation. 

If we use the zeroth-order approximation for fo and f,, (2.12) gives 

w(U) = K ( U ) / K ( - U ) .  (3.15) 

If ~ ( a )  is significantly different from K ( - U ) ,  W ( a )  becomes significantly different 
from unity and conservation of particles will be violated. 
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We can also evaluate E, a measure of the extent to which particle conservation is 
violated. Substituting (3.9) into (2.1 1) gives 

kq - K ( U )  K (- U )  kK ( U )  + qK ( - U )  
A =  s i n h p ( a ) + i  cosh p ( a ) .  (3.16) 

K(- -a )  K( - - a )  

Substituting for 1A1 and W ( a )  from (3.16) and (3.15) into (2.14) 

4kqK(a)[K(a)-K(-a)l 
E =  

[ kq - K (  U ) K (  -U) ]2  sinh2 @ ( U )  + [ k K  ( U )  + qK ( -U) ]2  cosh2 p (  a )  
(3.17) 

In the case of tunnelling p is a real, positive and increasing function of x and (3.17) 
shows that E will, in general, be small due to the size of @ ( a ) .  However, if @ ( a )  = O ,  
(3.17) becomes 

4kqK(a)[K(a) --.(-a)] 
[kK(4+qK(-a)12 

E =  

and if . ( U )  is significantly different from K ( - U ) ,  E may be significant. 
Now consider the first-order approximation given by (3.10) and (3.11). If W ( x )  

is computed from these expressions (see the appendix) we find W(x) = 1. It follows 
from (2.14) that E = 0. This means that the first-order W K B  approximation conserves 
particles. 

4. Numerical examples 

If fo is known f l  may be obtained from the textbook formula 

which is easily deduced from the constancy of the Wronskian. If we take 

fo (x )  = 1 + h:(x + a ) 2  (4.2) 

where h, is a positive constant then fo satisfies (2.6). It will satisfy (2.2) if 

2h: 
U = k 2 +  

1 + h: (x+  a)’ ’ (4.3) 

f l ,  as calculated from (4.1), satisfies (2.2) and (2.6) also. Substitution of (4.2) into 
(4.1) gives 

f l ( x )  = i h ; ‘ [ l +  h:(x+a)’] 

The values of [ T I ’ ,  IpI2, W and E were obtained from (2.9)-(2.12) and (2.14). For 
the exact values (4.2) and (4.4) were used to find f o ( a ) ,  f h ( a ) ,  f l (a)  and f : ( a ) .  1 ~ 1 ~  
and IpI’ were also calculated in zero-order and first-order WKB using the formulae of 
0 3, with U given by (4.3). Finally they were calculated by numerically solving the 
differential equation (2.2) for fo and f l  subject to (2.6); the numerical method used 
was the Taylor series method of order 4. We have called the last method the DE 
method-short for ‘differential equation’ method. 
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If U is given by (4.3), (3 .1)  yields 

from which we easily deduce that 

and 

(4.7) 

Our discussion in the previous section suggests that, if the quantities defined by (4.6) 
and (4.7) are very much less than unity, the WKB approximation should be good, but 
if they are comparable to, or greater than, unity then the WKB approximation may not 
do so well. If a = 1 and h, = 0.1 the right-hand sides of (4.6) and (4.7) are both very 
much less than unity for -a  d x S a, but if a = 1 and h, = 1 the right-hand sides are 
no longer numerically small compared with unity. We therefore expect the WKB 

approximation to do well in the first case, but not in the second. 
The results are shown in tables 1 and 2. In both cases we have taken a = k = q = 1, 

so that by (2.5) V, = 0. In table 1 h, = 1 ,  which, as we have seen, represents a situation 
in which the WKB method might not do so well. In table 2 h, = 0.1, when the WKB 

approximation is expected to do better. In both cases h = 0.01, where h is the step 
length used both in the numerical evaluation of the integral (3.7) which occurs in the 
WKB approximation and also in the solution of the differential equation (the DE method). 

The first columns in tables 1 and 2 are the results of the exact calculation where 
fo and f l  are given by (4.2) and (4.4). It is 'exact' in the sense that, with the potential 
(4.3), fo and f i  satisfy the differential equation (2.2) identically. The very small 

Table 1. U given by (4.3), a = k = q = h, = 1, h = 0.01. 

Exact calculation Zero-order W K B  First-order W K B  DE method 

lP12 
17l2 5.923 419 l o x  2.484 120 82 x 4.618 504 62 x 5.920 085 30 x 
W 9.999 999 96 x IO-' 4.472 138 83 x lo-' 1.000 000 64 1 .OOO 046 58 
E -2.206 645 58 X IO-'' -3.070 538 64 x 2.959 304 62 X 2.757 508 25 X 

9.407 658 09 x lo-' 9.444 534 05 x lo-' 9.538 149 83 x lo-' 9.408 019 05 x lo-' 

Table 2. U given by (4.3), a = k = 9 = 1, h, = 0.1, h = 0.01. 

~ ~~ ~~ ~ 

Exact calculation Zero-order W K B  First-order W K B  DE method 

IPI2 5.163 383 59x lo-' 5 . 1 7 9 0 6 8 7 0 ~  lo-' 5.203085 77x IO-' 5 . 1 6 3 3 7 9 3 5 ~  IO-' 
1TI2 4.836 620 80 x IO-' 
W 1.000 000 00 9.805 806 70 x lo-' 1.000 000 00 1 .OOO 000 03 

4.836 616 41 x lo-' 4.727 312 04 x IO-' 4.796 914 23 x IO-' 

E -1.126 11251x10-'" -9.361 9 2 5 7 8 ~ 1 0 - ~  - 1 . 1 1 6 8 6 8 6 3 ~ 1 0 - ' ~  1 . 4 8 6 4 6 9 8 2 ~ 1 0 - ~  
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departures of W and E from their theoretical values of unity and zero arise only from 
limitations on the accuracy with which fo, f,, f b  and f: can be calculated from their 
algebraic definitions. 

As we would expect, the result for the transmission probability ( ~ 1 ~  is close to the 
exact result even in zero-order WKB when h, = 0.1, but is not so good when h, = 1. The 
DE method, however, gives good accuracy for both reflection and transmission prob- 
abilities-the accuracy being limited only by the finite step length h. 

In zero-order WKB both W and E differ significantly from their exact values. In 
the case of W this is particularly so if h, = 1; both W and E improve when h, = 0.1, 
as we should expect. In first-order WKB the values of W and E are better than those 
obtained from the DE method. This, of course, is not surprising given the result proved 
in the last section that the first-order WKB approximation conserves particles. The 
differences of W and E from their theoretical values of unity and zero arise only from 
the numerical integration procedure used. 

The calculation was also performed with the linear potential 

U ( x )  = &-I- h,x (4.8) 

in zero-order and first-order WKB and the DE method. The results are shown in tables 
3 and 4. 

The two potentials in tables 3 and 4 differ only in the value of h, ; in table 3 h, = 1 
and in table 4 h, =0.1. Again the above criteria imply that we expect the WKB 

approximation to do better when h, = 0.1; for 

[ K (X)]’ = U0 + h,x - k 2  

so, using U, = 3 and k = 1 = a, 

(4.9) 
h, h, - K‘ K K ’  

K 2  - K 3  2( U0 -I- h , ~  - k2)3’2 = 2(2 f h , X ) 3 ’ 2  

Table 3. U given by (4.8), a = k = q = h, = 1, U,, = 3, h = 0.01. 

Zero-order W K B  First-order W K B  DE method 

lpI2 9.872 068 03 x lo-’ 9.892 484 80 x 10-1 9.872 276 54x lo-’ 
1 ~ 1 ~  2.215 851 63 x 1.075 154 44 x lo-’ 1.277 234 15 x 
W 1.732 054 74 1.000 002 26 9.999 997 32 x lo-’ 
E 9.365 320 00 x 2.435 194 03 x lo-* -3.425 809 87 x 

Table4. U g i v e n b y ( 4 . 8 ) , a = k = q = l , h , = O . l ,  Uo=3,h=0.01 .  

Zero-order W K B  First-order W K B  DE method 

Ip12 
lT IZ 1.299 369 79 x loT2 1.234296 81 x 1.235 815 07 x 
W 1.051 315 81 1.000 000 83 9.999 997 02 x lo-’ 
E 6.342 358 60X 1.029 976 66 x -3.683 017 00 X 

9.876 405 37 x lo-‘ 9.876 570 42 x 10-1 9.876 418 46 x 10-1 
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while 

K ( x ) - K ( - c I )  U0+h,x-k’)”’ - I =  (2fh.x)”‘ - - 1. 
.(-a) =( U,-h,a-k2 2-h,  

(4.10) 

If the right-hand sides of (4.9) and (4.10) are very much less than unity for x E [ -a,  a ]  = 
[-1,1] the WKB approximation should do well; this is the case if h, =0.1. 

The above remarks are confirmed by the figures, the WKB approximation doing 
much better when h, =0.1 (table 4) than when h, = 1 (table 3). Recalling that, in 
first-order WKB, W = 1 and E = 0 the nearness of W to unity and E to zero in the second 
and third columns gives a check on the numerical accuracy attained. 

5. Tunnelling time 

The meaning to be attached to the term ‘tunnelling time’ is complicated and context 
dependent. It may be the time a particle spends on average inside [ -a,  a ]  (the ‘dwell’ 
time), or the time taken for the transmitted particle to traverse the interval (‘traversal’ 
time), or the time for a signal to be transmitted (‘signal’ time) (see Buttiker and 
Landauer 1982, Biittiker 1983, Stevens 1983). In this paper we shall consider it as the 
difference between the time, t l ,  when the centre of the incident wavepacket reaches 
the point x = - a  and the time, t2 ,  when the centre of the transmitted wavepacket 
appears at x = a .  We shall follow the heuristic method of stationary phase used by 
Eisenbud and Wigner in their pioneering work (Wigner 1955) and which has become 
standard textbook material (see, for example, Mavromatis 1987, p 79). 

We shall find an expression for 

T=tz-tl  (5.1) 
in terms of f o ( a ) ,  f l ( a ) ,  f b ( a )  and f i ( a ) .  From this we shall show that the classical 
expression for T is given by the zero-order WKB approximation or classical approxima- 
tion provided V is everywhere continuous. 

We shall not assume that k 2 >  U(x);  in fact, in going to the classical limit, we shall 
have to assume the opposite inequality. The term ‘tunnelling time’ is therefore inap- 
propriate, so we shall call T the ‘traversal time’. 

6. Expression for the traversal time 

The incoming wavepacket has the wavefunction (Clin( , t )  where 
;r: 

(Clin(x, t ) =  j-m 4(k’) exp[ik’x-iw(k‘)t] dk’ (6.1) 

w(k’) = AkI2/2m. (6.2) 
4 is a normalisable complex-valued function of the real variable k‘. We shall suppose 
that the incident wavepacket represents the state of a particle of well defined velocity 
uin > 0, so that 4 vanishes unless k’ is in the neighbourhood of k = mui,/ A. The method 
of stationary phase implies that (Clin( * , t )  is only significant in the neighbourhood of 
the point x = xi,( t )  where this is the solution of 

d 
- {arg 4( k)  + kx - w(k)t} = 0. 
d k  (6.3) 
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Equations (6.2) and (6.3) give 

Xin( t )  = Xin + Vi,f 

where 

vin = hk/m 

d 
dk  

xin = -- arg c$( k). 

The transmitted wavepacket t&( , t )  is given by 
oc 

+Jx, t ) =  T(k’)c$(k’) exp[iq’x-iw(k’)t] dk‘ 

where q’ is determined by the condition 

+ vo -- h2k’* - hzq‘z 
2m 2m 

(6.4) 

(6.7) 

(cf (2.5)). In this case the stationary phase method shows that the transmitted 
wavepacket is centred on the point x = xtr( t )  where 

xtr(t) =xtr+ V t r t  (6.9) 

Ut, = hq/m (6.10) 

dq k v i n  

2m 2m dk 4 v t r  

----_ - -  h2k2 h2q2 
- + v, so that 

d 
dk  

x =-- ut‘ (“arg .r(k)+-argc$(k) t r  vin d k  

(6.1 1) 

(6.12) 

The centre of the incident wavepacket traverses the point x = -a when t = t l  where 

(6.13) 

The centre of the transmitted wavepacket emerges at the point x = a when t = t2 where 

(6.14) 

xi,, + vin t ,  = -a. 

xtr + utrt2 = a. 

It follows from (5.1) and the results of this section that 

1 d  a a  
T=- -arg T(k)+-+- 

vin dk  Vin Vtr 

If we put (2.9) into (6.15) we obtain 

(6.15) 

(6.16) 

Insertion of (2.11) into (6.16) yields 

(6.17) 

where we have replaced vi, by v = hk/m for simplicity. 
It should be noted that the phase involved here is that of the time-dependent 

wavefunction in k space; the WKB approximation involves the phase of the time- 
independent wavefunction in configuration space (see Messiah 1964, p 231). 
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7. The classical limit for the traversal time 

We now examine the result in the classical limit h + O  when the zero-order W K B  

approximation is applicable provided there are no classical turning points in ( -a,  a ) .  
fo and fl are now given by (3.7) and (3.9), so (2.11) becomes 

Discontinuities in the potential at x = * a  introduce non-classical phenomena, so 
we assume I K ( - u ) ~  = k and I K ( u ) ~  = q. We also need to assume that k2>  U throughout, 
so that classical transmission time has a meaning. With these assumptions (7.1) gives, 
with the aid of (3.1) and (3.7), 

1 A = 2iq exp( -i l:a [ k z -  U ( X ) ] " ~  dx  

so that by (6.16) 

T=-- l a  [k2-  U ( ~ ) ] " ~ d x .  
vin dk - a  

Differentiating under the integral sign we easily find from (7.3) that 

(7.2) 

(7.3) 

(7.4) 

Equation (7.4) is just the classical expression for the transit time of a particle with 
incident velocity v i " .  

8. The rectangular barrier 

A particularly simple case is the rectangular barrier, when V = VI, say, for -a  < x < a, 
with VI > h2k2 /2m.  Thus K ( X )  = constant = K ,  say. The zeroth-order W K B  approxima- 
tion is now exact and so (3.9) and (3.7) give 

fo(x) = cosh K ( X +  a )  f l (x)  = K - ~  sinh K ( x + u ) .  (8.1) 

Applying (8.1), (6.17) becomes 

For a 'strong' barrier, when 2 ~ a  >> 1, (8.2) approximates to 

T=---ttan-l 1 d  K ( k s q )  
v dk (kq-K') (8.3) 

and the tunnelling time becomes independent of the barrier thickness, as pointed out 
by Franz (1967). However, (2.9) and (2.11) imply, in the strong barrier case, that 

2 ,  4 k 2 ~ 2  e x p ( - 4 ~ ~ )  
I T '  -(kq - K ~ ) ~ +  ( k +  q ) 2 ~ 2  (8.4) 

which is very small-although particles will cross the barrier quickly, few of them will, 
in fact, get through. 
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If the differentiation on the right-hand side of (8.3) is carried out we find 

1 
T = - ( k / q  + 1). 

K U  
(8.5) 

This is the same result as obtained by Franz (1967), but obtained from the general 
result (6.17), valid for any sufficiently well behaved potential V (such as a piecewise 
continuous one). 

9. Discussion 

We have described a method of calculating the tunnelling coefficients whose accuracy 
is limited only by the numerical accuracy with which the ordinary differential equation 
(2.2) can be solved in (-a, a )  for the fundamental solutions fa and fl .  Conservation 
of particles is not built into the numerical procedure as in the VL method referred to 
in P 1. Instead, it provides a check on the numerical accuracy by means of the quantity 
E (see (2.13) and (2.14)). A further check is provided by the Wronskian W :  if W is 
close to unity E will, in general, be small. The converse may not be the case-for 
example, in tunnelling, if a is large (see 0 8). However, the Wronskian still provides 
a useful check. 

We have used our results to show that the first-order WKB approximation conserves 
particles. We have also expressed the traversal time T in terms of f o ( a ) ,  f;(a), f l ( u )  
andf ’ , (a )  (equation (6.17)). These last four numbers are determined by the numerical 
solution of (2.2) subject to the boundary conditions (2.6). We also used (6.16) to show 
that T takes the classical form (7.4) in the classical limit. 

Finally we have applied our results to the special case of the rectangular barrier. 
This has confirmed Franz’s expression in this case. 

Appendix 

We shall prove that, if fo and f l  are calculated by means of the first-order WKB 

approximation, their Wronskian is unity. Equations (3.10) and (3.1 1) give 

fo = A0u + Bou f1= BIU 

where 

sinh p K = K ( X )  P = P ( x ) .  z1 = K - 1 / 2  = K-1 /2  cosh P 
Hence by (2.12) 

W = ( A ~ u  + B ~ u ) (  Bl U ’ )  - ( A ~ u ’ +  B~u’)( Bl U )  

=AOB,(UV‘- u ’ u ) .  

Now it is easily checked from the definitions of U and U that 

U U ’ -  24’22 = 1 

and so 

w =  AoBl = [ K ( - a ) ] 1 ’ 2 [ K ( - U ) ] - ” 2  = 1. 
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